Skip to main content

Value Stream Mapping Movie

Movie name: Value Stream Mapping
By: Bill Webb & Jim Bickerstaff

January 2007
http://www.
TPSmethods
.com/




Value Stream Mapping is a Lean technique used to analyse the flow of materials and information currently required to bring a product or service to a consumer. At Toyota, where the technique originated, it is known as "Material and Information Flow Mapping"


Implementation


  1. Identify the target product, product family, or service.

  2. Draw a current state value stream map, which is the current steps, delays, and information flows required to deliver the target product or service. This may be a production flow (raw materials to consumer) or a design flow (concept to launch). There are 'standard' symbols for representing supply chain entities.

  3. Assess the current state value stream map in terms of creating flow by eliminating waste.

  4. Draw a future state value stream map.

  5. Implement the future state.

Comments

Popular posts from this blog

10 Ways to Failure for a New Six Sigma Deployment

10 Ways to Failure for a New Six Sigma Deployment The returns from a well-deployed Six Sigma initiative can be richly rewarding. The results of many business organizations stand in testimony to that. But the opposite also is true. Ten major points are critical to the success or failure of a Six Sigma deployment. Here the points are outlined as the 10 ways that a Six Sigma initiative can fail: 1- Lack of Commitment from the Top 2- Part-time Black Belts 3- Projects Not Linked to Organizational Objectives 4- Focusing on Quantity Instead of Quality 5- No Review Mechanism 6- No Visible Reward and Recognition Mechanism 7- No Infrastructural Support to Teams Working on Projects 8- Copy-and-Paste Deployment 9- Too Much Insistence on Statistics and Tools 10- Expecting Too Much and Too Soon - Ref: www.isixsigma.com

Design for Six Sigma (DFSS) and Crystal Ball Case Study

Background In this case study, we are a compressor manufacturer in the process of developing a new type of compressor. Our project team was charged with developing the design for the compressor using Design for Six Sigma (DFSS) tools and techniques. As we worked through the DMA DV (Define, Measure, Analyze, Design, Verify) process, we used simulation and optimization to provide project justification, lend insight into the critical drivers of quality, and help create a cost effective design th at meets customer requirements. For DFSS, critical benefits of simulation and optimization are the ability to prototype new products or processes without an appreciable investment of time or money, minimal defects, and sales driven through improved customer satisfaction. Define The first step in our Six Sigma process was to estimate the financial impact of this project. We started by developing a simple spreadsheet model (DFSS Case Study Defin e.xls) in Microsoft ® Excel to take into

Advanced Product Quality Planning

FUNDAMENTALS OF PRODUCT QUALITY PLANNING Product Quality Planning is a structured method of defining and establishing the steps necessary to assure that a product satisfies the customer. The goal of product quality planning is to facilitate communication with everyone involved to assure that all required steps are completed on time. Effective product quality planning depends on a company’s top management commitment to the effort required in achieving customer satisfaction. Some of the benefits of Product Quality Planning are: • To direct resources to satisfy the customer. • To promote early identification of required changes. • To avoid late changes. • To provide a quality product on time at the lowest cost. Each Product Quality Plan is unique. The actual timing and sequence of execution is dependent on customer needs and expectations and/or other practical matters. The earlier a work practice, tool, and/or analytical technique can be implemented in the Product Quality Planning Cycle,