Skip to main content

Variation is a serious thing

Many parts have to fit together to make a product, like a cell phone. When engineers design the parts, they account for the fact that all parts will display some amount of variation as they are produced. Variation is the degree to which a part, product, service, or transaction differs from all others in the same class or category.

In the case of a phone, each class of parts, like the plastic casting, vary in size, weight, and even color. Just as the phone cases vary, so does the clear plastic display that covers the liquid crystal display. Then you have the many hinges, buttons, antenna, internal component, and so on. All these parts have to snap and fit together well if the phone is to perform its function to your satisfaction. In other words, you can only tolerate a certain amount of variation. A little too much variation and the phone won’t work property. A little more variation and it won’t work at all.

And we all know who’s going to end up with the bad phone, right?

Comments

thanks dear, I was searching for long time, this figure helped me to get the statistical meaning of 6 sigma!
wish you all the best.
Thanks dear, I was searching for so long!!! this figure helped me to ger the statistical meaning of 6sigma.
wish you all the best
All the process is talking about variation. The big variation is a "bomb", not sure when it will going to explode. So, to control the variation is very important. And six sigma methodology help on reduce the variation.

Popular posts from this blog

10 Ways to Failure for a New Six Sigma Deployment

10 Ways to Failure for a New Six Sigma Deployment The returns from a well-deployed Six Sigma initiative can be richly rewarding. The results of many business organizations stand in testimony to that. But the opposite also is true. Ten major points are critical to the success or failure of a Six Sigma deployment. Here the points are outlined as the 10 ways that a Six Sigma initiative can fail: 1- Lack of Commitment from the Top 2- Part-time Black Belts 3- Projects Not Linked to Organizational Objectives 4- Focusing on Quantity Instead of Quality 5- No Review Mechanism 6- No Visible Reward and Recognition Mechanism 7- No Infrastructural Support to Teams Working on Projects 8- Copy-and-Paste Deployment 9- Too Much Insistence on Statistics and Tools 10- Expecting Too Much and Too Soon - Ref: www.isixsigma.com

Design for Six Sigma (DFSS) and Crystal Ball Case Study

Background In this case study, we are a compressor manufacturer in the process of developing a new type of compressor. Our project team was charged with developing the design for the compressor using Design for Six Sigma (DFSS) tools and techniques. As we worked through the DMA DV (Define, Measure, Analyze, Design, Verify) process, we used simulation and optimization to provide project justification, lend insight into the critical drivers of quality, and help create a cost effective design th at meets customer requirements. For DFSS, critical benefits of simulation and optimization are the ability to prototype new products or processes without an appreciable investment of time or money, minimal defects, and sales driven through improved customer satisfaction. Define The first step in our Six Sigma process was to estimate the financial impact of this project. We started by developing a simple spreadsheet model (DFSS Case Study Defin e.xls) in Microsoft ® Excel to take into

Advanced Product Quality Planning

FUNDAMENTALS OF PRODUCT QUALITY PLANNING Product Quality Planning is a structured method of defining and establishing the steps necessary to assure that a product satisfies the customer. The goal of product quality planning is to facilitate communication with everyone involved to assure that all required steps are completed on time. Effective product quality planning depends on a company’s top management commitment to the effort required in achieving customer satisfaction. Some of the benefits of Product Quality Planning are: • To direct resources to satisfy the customer. • To promote early identification of required changes. • To avoid late changes. • To provide a quality product on time at the lowest cost. Each Product Quality Plan is unique. The actual timing and sequence of execution is dependent on customer needs and expectations and/or other practical matters. The earlier a work practice, tool, and/or analytical technique can be implemented in the Product Quality Planning Cycle,